US ERA ARCHIVE DOCUMENT

Research Program

- Assess urban vegetation and ecosystem services
- Develop management tools

What is i-Tree?

*A suite of tools to assess urban vegetation and their ecosystem services and values

Public-Private Partnership

USDA Forest Service

May Davey Tree Expert Co.

National Arbor Day Foundation

Society of Municipal Arborists

Mark International Society of Arboriculture

Measurement is Critical

i-Tree Eco Use

* Eco has been used worldwide in over 60 cities (9 countries)

R E Ε

Temperature reduction

R

Ε

Ε

Temperature Mapping

Heat Island – Baltimore, Maryland

Source: Heisler et al., USFS

Heat Island – Baltimore, Maryland

Source: Heisler et al., USFS

Heat Island – Baltimore, Maryland

Source: Heisler et al., USFS

Temperature reduction

Removal

Ε

Ε

Pollution Removal Methods

Flux (F) = Deposition Velocity (
$$V_d$$
) x Pollutant Conc. (C) ($g/m^2/sec$) (m/sec) (g/m^3)

$$V_d = 1/(R_a + R_b + R_c)$$

 R_a = aerodynamic resistance

R_b = quasi-laminar boundary-layer resistance

 R_c = canopy resistance (Baldocchi et al., 1987)

Inputs: Hourly meteorological and pollution data; leaf area

Pollution Removal by Trees

<u>City</u>	<u>CO</u>	<u>NO2</u>	<u>O3</u>	<u>PM10</u>	<u>SO2</u>	<u>Total</u>	<u>Range</u>	<u>g/m2</u>	<u>\$</u>	<u>\$/ha</u>
Beijing, China	na	132	256	772	101	1,261	na	27.5	6,264,000	na
Santiago, Chile	68	201	420	1,410	131	2,230	(948-3,857)	15.3	28,176,000	1,934
Atlanta, GA	39	181	672	528	89	1,509	(538-2,101)	12	8,321,000	663
Freehold, NJ	1	3	9	6	1	20	(7-27)	11.4	110,000	632
San Juan, PR	56	55	161	153	86	511	(222-768)	11.2	2,342,000	511
Woodbridge, NJ	6	42	66	62	15	191	(72-267)	10.8	1,037,000	586
Fuenlabrada, Spain	0	1	1	1	0	3	(1-5)	10.2	19,000	567
Moorestown, NJ	2	14	43	38	9	107	(41-157)	10.1	576,000	541
Baltimore, MD	9	94	223	142	55	522	(183-725)	9.9	2,876,000	545
Philadelphia, PA	10	93	185	194	41	522	(203-742)	9.7	2,826,000	527
New York, NY	67	364	536	354	199	1,521	(619-2,185)	9.1	8,071,000	482
San Francisco, CA	7	25	47	42	7	128	(51-195)	9	693,000	486
Toronto, Canada	36	224	460	288	91	1,099	(410-1,466)	8.5	6,105,000	470
Jersey City, NJ	2	9	13	9	5	37	(16-56)	8.4	196,000	445
Washington, DC	18	50	152	107	51	379	(150-568)	8.3	1,956,000	429
Boston, MA	6	48	108	73	23	257	(94-346)	8.1	1,426,000	447
Morgantown, WV	1	5	26	18	9	60	(22-98)	7.5	311,000	387
Syracuse, NY	2	12	55	23	7	99	(37-134)	6.6	568,000	378

Temperature reduction

Removal

Emissions

Ε

Temperature reduction

Removal

Emissions

Energy Conservation

(from Akbari et al., 1992)

Urban Trees and Ozone in the Northeastern United States

- 🌂 Increased urban tree cover:
 - Reduced ozone (O_3) in urban areas (-1 ppb daytime) Increased O_3 regionally (0.3 ppb), particularly downwind
- Physical effects of trees on pollution removal, air temperature, wind speed and boundary layer height are important
- Tree removal of NO_x lead to increased O_3 at night (loss of NO_x scavenging of O_3)
- Tree VOC emissions had no detectable (<1 ppb) effect on O₃

Species Characteristics

- Leaf Area / Canopy size
- Transpiration / V_d
- Leaf biomass / VOC rates

Landscape design is also important
Source vs. sink

Leaf Characteristics (PM)

- Crown texture (fine)
- Leaf complexity (pinnate)
- Leaf size (small)
- Leaf surface
 - Rough, resinous, hairy, sticky, etc.
- Leaf margins
 - Ciliate, serrulate, filamentous

Figure 5-3. Scanning electron microscope micrograph of the adaxial surface of an 8-week-old London plane leaf. Spore, pollen, carbonaceous, angular, and aggregate particles are visible. Scale, $10\,\mu m$.

(from Smith, 1990)

i-Tree Tools

i-Tree Species					
)					
Location					
Nation:	United Staes		City:	Brentwood	•
State:	_		County:		
Otato.	Tennessee		County.	Williamson	
Height Constraints	(Optional)				
€ English	C Metric			A WAY	14
Minimum (feet):		Maximum (feet):	_	X-X	
minimum (reed).		maximam (reet).		A STANDARD	
Air Pollutant Remo	val (0-10 import	ance scale)			
© Overall	C Specific	and vouid,			
o voidii	эрсоно				
Overall Rate	0 🔻				
We.	3				
	5				
	5 6 7				7.1
Other Functions (0		scale)			
Low VOC Emission	ons 10 V	Carbon Storage	0 🔻	Wind Reduction	0 •
Air Temperature F		■ UV Radiation Reduc	ction 0 🔻	Building Energy Reduction	0 🔻
			lo T		10
Streamflow Redu	ction 0	↓ Low Allergenicity	0 💌		
Report					
Top 10%	C All			View Re	port

Beneficial Characteristics

- Large leaf area
- High transpiration
- Low VOC emissions
- Evergreen
- Long-lived
- Low maintenance
- Healthy right tree for location
- Leaf texture (particles)

Research Gaps

- Local-scale studies
 - Vegetation configuration*
 - Leaf area distribution
 - **Species
 - General classes
- Integrated studies
 - Local to regional

Existing Species Information

- Near roadside studies
- Integrated ozone studies
- Air temperature modeling
- Ozone Forming Potential (Benjamin and Winer)
- i-Tree Species (~1,600 species)

Promising Approaches

Integrated modeling
*EPA, FS, Universities

Communicating Research

- Targeted outreach
 - *State officials, planners, etc

